Coxeter-like groups for groups of set-theoretic solutions of the Yang–Baxter equation
Coxeter-like groups for groups of set-theoretic solutions of the Yang–Baxter equation

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France
Coxeter-like groups for groups of set-theoretic solutions of the Yang–Baxter equation

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015
Coxeter-like groups for groups of set-theoretic solutions of the Yang–Baxter equation

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• 1. Set-theoretic solutions of YBE, biracks and RC-quasigroups
1. Set-theoretic solutions of YBE, biracks and RC-quasigroups
2. YBE-groups and monoids
Coxeter-like groups for groups of set-theoretic solutions of the Yang–Baxter equation

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, France

Topology Seminar, Tokyo University, May 7, 2015

• 1. Set-theoretic solutions of YBE, biracks and RC-quasigroups
• 2. YBE-groups and monoids
• 3. Garside germs and Coxeter-like groups
• Original Yang–Baxter Equation:
• **Original Yang–Baxter Equation**: For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,
The Yang–Baxter equation

- Original Yang–Baxter Equation: For V a \mathbb{C}-vector space and $R : V \otimes V \rightarrow V \otimes V$,

$$R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).$$

(*)
• **Original Yang–Baxter Equation:** For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,

\[R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a). \] (*)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x,$
- **Original Yang–Baxter Equation**: For V a \mathbb{C}-vector space and $R : V \otimes V \rightarrow V \otimes V$,
\[
R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).
\] (*)

- Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (*) becomes
\[
R_{12} \ R_{23} \ R_{12} = R_{23} \ R_{12} \ R_{23}.
\]
• **Original Yang–Baxter Equation:** For V a \mathbb{C}-vector space and $R : V \otimes V \rightarrow V \otimes V$,

$$R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).$$

(*)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (*) becomes

$R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}$.

• **Fact:** If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.
• Original **Yang–Baxter Equation**: For V a \mathbb{C}-vector space and $R : V \otimes V \rightarrow V \otimes V$,

$$R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).$$

(*)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (*) becomes

$$R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.$$

• **Fact**: If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

• **Definition** (Drinfel’d):
• **Original Yang–Baxter Equation:** For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,
\[
R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a). \quad (\ast)
\]

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (\ast) becomes
\[
R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.
\]

• **Fact:** If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

• **Definition** (Drinfel’d): A set-theoretic solution of YBE
The Yang–Baxter equation

• Original Yang–Baxter Equation: For V a \mathbb{C}-vector space and $R : V \otimes V \rightarrow V \otimes V$,

$$R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).$$ \hspace{1cm} (*)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, $(*)$ becomes

$$R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.$$

• Fact: If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

• Definition (Drinfel’d): A set-theoretic solution of YBE is a pair (X, ρ), where X is a set and $\rho : X \times X \rightarrow X \times X$ satisfies

$$\rho_{12} \rho_{23} \rho_{12} = \rho_{23} \rho_{12} \rho_{23}.$$
Original Yang–Baxter Equation: For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,\[R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a). \] (\star)

Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (\star) becomes\[R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}. \]

Fact: If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

Definition (Drinfel’d): A set-theoretic solution of YBE is a pair (X, ρ), where X is a set and $\rho : X \times X \to X \times X$ satisfies\[\rho_{12} \rho_{23} \rho_{12} = \rho_{23} \rho_{12} \rho_{23}. \]

Called involutive if $\rho^2 = \text{id}$,
The Yang–Baxter equation

- **Original Yang–Baxter Equation:** For \(V \) a \(\mathbb{C} \)-vector space and \(R : V \otimes V \to V \otimes V \),
 \[
 R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a). \tag{*}
 \]

- Substituting \(R \) with \(PR \), where \(P(x \otimes y) := y \otimes x \), \((*) \) becomes
 \[
 R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.
 \]

- **Fact:** If there exists a basis \(X \) of \(V \) s.t. \(R \) preserves \(X \otimes X \) (a very special case!), then \(R \) is determined by the restriction of \(R \) to \(X \otimes X \).

- **Definition (Drinfel’d):** A set-theoretic solution of YBE is a pair \((X, \rho)\), where \(X \) is a set and \(\rho : X \times X \to X \times X \) satisfies
 \[
 \rho_{12} \rho_{23} \rho_{12} = \rho_{23} \rho_{12} \rho_{23}.
 \]
 Called **involutive** if \(\rho^2 = \text{id} \), and **nondegenerate** if, writing \(\rho = (\rho_1, \rho_2) \),
 \[
 \forall s (y \mapsto \rho_1(s, y) \text{ is bijective}),
 \]
• **Original Yang–Baxter Equation:** For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,
\[
R_{12}(a) R_{23}(a+b) R_{23}(b) = R_{23}(b) R_{23}(a+b) R_{12}(a).
\] (*)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, (*) becomes
\[
R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.
\]

• **Fact:** If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

• **Definition (Drinfel’d):** A set-theoretic solution of YBE is a pair (X, ρ), where X is a set and $\rho : X \times X \to X \times X$ satisfies
\[
\rho_{12} \rho_{23} \rho_{12} = \rho_{23} \rho_{12} \rho_{23}.
\]
Called **involutive** if $\rho^2 = \text{id}$, and **nondegenerate** if, writing $\rho = (\rho_1, \rho_2)$,
\[
\forall s \ (y \mapsto \rho_1(s, y) \text{ is bijective}), \quad \text{and} \quad \forall t \ (x \mapsto \rho_2(x, t) \text{ is bijective}).
\]
• **Original Yang–Baxter Equation**: For V a \mathbb{C}-vector space and $R : V \otimes V \to V \otimes V$,

\[
R_{12}(a) R_{23}(a + b) R_{23}(b) = R_{23}(b) R_{23}(a + b) R_{12}(a).
\]

\((*)\)

• Substituting R with PR, where $P(x \otimes y) := y \otimes x$, $(*$) becomes

\[
R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.
\]

• **Fact**: If there exists a basis X of V s.t. R preserves $X \otimes X$ (a very special case!), then R is determined by the restriction of R to $X \otimes X$.

• **Definition** (Drinfel’d): A set-theoretic solution of YBE is a pair (X, ρ), where X is a set and $\rho : X \times X \to X \times X$ satisfies

\[
\rho_{12} \rho_{23} \rho_{12} = \rho_{23} \rho_{12} \rho_{23}.
\]

Called **involutive** if $\rho^2 = \text{id}$, and **nondegenerate** if, writing $\rho = (\rho_1, \rho_2)$,

\[
\forall s \ (y \mapsto \rho_1(s, y) \text{ is bijective}), \quad \text{and} \quad \forall t \ (x \mapsto \rho_2(x, t) \text{ is bijective}).
\]

• Even for X finite, very poorly understood.
• **Definition** (Fenn–Rourke?):
• Definition (Fenn–Rourke?): A birack is a triple \((X, [,])\) where \([,]\) are binary operations on \(X\) satisfying

\[
\begin{align*}
(a \cdot b) \cdot ((a \cdot b) \cdot c) &= a \cdot (b \cdot c), \\
(a \cdot b) \cdot ((a \cdot b) \cdot c) &= (a \cdot (b \cdot c)) \cdot (b \cdot c), \\
(a \cdot b) \cdot c &= (a \cdot (b \cdot c)) \cdot (b \cdot c),
\end{align*}
\]
Definition (Fenn–Rourke?): A **birack** is a triple \((X, [\cdot], [\cdot])\) where \([\cdot], [\cdot] \) are binary operations on \(X\) satisfying

\[
\begin{align*}
(a \cdot b) \cdot ((a \cdot b) \cdot c) &= a \cdot (b \cdot c), \\
(a \cdot b) \cdot ((a \cdot b) \cdot c) &= (a \cdot (b \cdot c)) \cdot (b \cdot c), \\
(a \cdot b) \cdot c &= (a \cdot (b \cdot c)) \cdot (b \cdot c),
\end{align*}
\]

and the left-translations of \([\cdot]\) and the right-translations of \([\cdot]\) are one-to-one.
Definition (Fenn–Rourke?): A birack is a triple \((X, \lceil, \rceil)\) where \(\lceil, \rceil\) are binary operations on \(X\) satisfying

\[
\begin{align*}
(a \lceil b) \lceil ((a \lceil b) \rceil c) &= a \lceil (b \rceil c), \\
(a \lceil b) \rceil ((a \lceil b) \rceil c) &= (a \rceil (b \rceil c)) \rceil (b \rceil c), \\
(a \lceil b) \rceil c &= (a \rceil (b \rceil c)) \rceil (b \rceil c),
\end{align*}
\]

and the left-translations of \(\lceil\) and the right-translations of \(\rceil\) are one-to-one. A birack is involutive if, moreover,

\[
\begin{align*}
(a \lceil b) \lceil (a \lceil b) &= a \quad \text{and} \quad (a \lceil b) \rceil (a \lceil b) = b.
\end{align*}
\]
• **Definition** (Fenn–Rourke?): A birack is a triple \((X, [\cdot], [\cdot])\) where \([\cdot], [\cdot]\) are binary operations on \(X\) satisfying

\[
(a \cdot b) \cdot ((a \cdot b) \cdot c) = a \cdot (b \cdot c),
\]

\[
(a \cdot b) \cdot ((a \cdot b) \cdot c) = (a \cdot (b \cdot c)) \cdot (b \cdot c),
\]

\[
(a \cdot b) \cdot c = (a \cdot (b \cdot c)) \cdot (b \cdot c),
\]

and the left-translations of \([\cdot]\) and the right-translations of \([\cdot]\) are one-to-one. A birack is **involutive** if, moreover,

\[
(a \cdot b) \cdot (a \cdot b) = a \quad \text{and} \quad (a \cdot b) \cdot (a \cdot b) = b.
\]

• **Proposition:** Invol. nondeg. set-theoretic solution YBE \(\iff\) Involutive biracks.
• **Definition (Fenn–Rourke?):** A birack is a triple \((X, [,])\) where \([,]\) and \([,]\) are binary operations on \(X\) satisfying

\[
(a [b]) \begin{array}{c} [c] \\ [c]
\end{array} = a [(b [c])],
\]

\[
((a [b]) [c]) = (a [(b [c])]) [(b [c])],
\]

\[
(a [b]) [c] = (a [(b [c])]) [(b [c])],
\]

and the left-translations of \([,]\) and the right-translations of \([,]\) are one-to-one. A birack is **involutive** if, moreover,

\[
(a [b]) \begin{array}{c} [c] \\ [c]
\end{array} = a \quad \text{and} \quad (a [b]) \begin{array}{c} [c] \\ [c]
\end{array} = b.
\]

• **Proposition:** Invol. nondeg. set-theoretic solution YBE \(\iff\) Involutive biracks.

• Proof: Put \(a [b] := \rho_1(a, b), \quad a \begin{array}{c} [c] \\ [c]
\end{array} := \rho_2(a, b),\)
• **Definition** (Fenn–Rourke?): A **birack** is a triple (X, \lceil, \rceil) where \lceil, \rceil are binary operations on X satisfying

\[
(a \lceil b) \lceil ((a \lceil b) \rceil c) = a \lceil (b \rceil c),
\]
\[
(a \lceil b) \lceil ((a \lceil b) \rceil c) = (a \lceil (b \rceil c)) \lceil (b \rceil c),
\]
\[
(a \lceil b) \lceil c = (a \lceil (b \rceil c)) \lceil (b \rceil c),
\]

and the left-translations of \lceil and the right-translations of \rceil are one-to-one. A birack is **involutive** if, moreover,

\[
(a \lceil b) \lceil (a \lceil b) = a \quad \text{and} \quad (a \lceil b) \lceil (a \lceil b) = b.
\]

• **Proposition**: Invol. nondeg. set-theoretic solution YBE \iff Involutive biracks.

• **Proof**: Put $a \lceil b := \rho_1(a, b)$, $a \lceil b := \rho_2(a, b)$, and use (X, \lceil, \rceil) for colouring braids:
• **Definition** (Fenn–Rourke?): A birack is a triple (X, \lceil, \rceil) where \lceil, \rceil are binary operations on X satisfying

\[
(a \lceil b) \lceil ((a \lceil b) \rceil c) = a \lceil (b \rceil c),
\]
\[
(a \lceil b) \rceil ((a \lceil b) \rceil c) = (a \rceil (b \rceil c)) \rceil (b \rceil c),
\]
\[
(a \lceil b) \rceil c = (a \rceil (b \rceil c)) \rceil (b \rceil c),
\]

and the left-translations of \lceil and the right-translations of \rceil are one-to-one. A birack is **involutive** if, moreover,

\[
(a \lceil b) \lceil (a \lceil b) = a \quad \text{and} \quad (a \lceil b) \rceil (a \lceil b) = b.
\]

- **Proposition**: Invol. nondeg. set-theoretic solution YBE \iff Involutive biracks.

- Proof: Put $a \lceil b := \rho_1(a, b)$, $a \rceil b := \rho_2(a, b)$, and use (X, \lceil, \rceil) for colouring braids:
• **Definition** (Fenn–Rourke?): A birack is a triple \((X, \cdot, \cdot)\) where \(\cdot, \cdot\) are binary operations on \(X\) satisfying

\[
(a \cdot b) \cdot ((a \cdot b) \cdot c) = a \cdot (b \cdot c),
\]

\[
(a \cdot b) \cdot ((a \cdot b) \cdot c) = (a \cdot (b \cdot c)) \cdot (b \cdot c),
\]

\[
(a \cdot b) \cdot c = (a \cdot (b \cdot c)) \cdot (b \cdot c),
\]

and the left-translations of \(\cdot\) and the right-translations of \(\cdot\) are one-to-one. A birack is **involutive** if, moreover,

\[
(a \cdot b) \cdot (a \cdot b) = a \quad \text{and} \quad (a \cdot b) \cdot (a \cdot b) = b.
\]

• **Proposition**: Invol. nondeg. set-theoretic solution YBE \(\iff\) Involutive biracks.

• Proof: Put \(a \cdot b := \rho_1(a, b),\ a \cdot b := \rho_2(a, b),\) and use \((X, \cdot, \cdot)\) for colouring braids:
• **Definition** (Fenn–Rourke?): A birack is a triple \((X, \lceil, \rceil)\) where \(\lceil, \rceil\) are binary operations on \(X\) satisfying

\[
(a \lceil b) (a \lceil b \rceil c) = a \lceil (b \rceil c),
\]
\[
(a \lceil b) \lceil ((a \lceil b) \rceil c) = (a \lceil (b \rceil c)) \rceil (b \rceil c),
\]
\[
(a \lceil b)
ceil c = (a \lceil (b \rceil c)) \rceil (b \rceil c),
\]
and the left-translations of \(\lceil\) and the right-translations of \(\rceil\) are one-to-one. A birack is **involutive** if, moreover,

\[
(a \lceil b) \lceil (a \lceil b) = a \quad \text{and} \quad (a \lceil b) \rceil (a \lceil b) = b.
\]

• **Proposition:** Invol. nondeg. set-theoretic solution YBE \(\iff\) Involutive biracks.

• Proof: Put \(a \lceil b := \rho_1(a, b), a [\lceil b := \rho_2(a, b)\), and use \((X, \lceil, \rceil)\) for colouring braids:
• **Definition (Fenn–Rourke?):** A birack is a triple \((X, \cdot, \circ)\) where \(\cdot, \circ\) are binary operations on \(X\) satisfying

\[
(a \cdot b) \cdot ((a \cdot b) \circ c) = a \cdot (b \circ c),
\]
\[
(a \cdot b) \circ ((a \cdot b) \circ c) = (a \circ (b \circ c)) \cdot (b \circ c),
\]
\[
(a \cdot b) \cdot c = (a \circ (b \circ c)) \cdot (b \circ c),
\]

and the left-translations of \(\cdot\) and the right-translations of \(\circ\) are one-to-one. A birack is **involutive** if, moreover,

\[
(a \cdot b) \cdot (a \circ b) = a \quad \text{and} \quad (a \cdot b) \circ (a \circ b) = b.
\]

• **Proposition:** Invol. nondeg. set-theoretic solution YBE \(\iff\) Involutive biracks.

• **Proof:** Put \(a \cdot b := \rho_1(a, b)\), \(a \circ b := \rho_2(a, b)\), and use \((X, \cdot, \circ)\) for colouring braids:
• **Definition (Rump):**
Definition (Rump): An **RC-system** is a pair \((X, *)\) where * is a binary operation on \(X\) satisfying
\[
(x * y) * (x * z) = (y * x) * (y * z).
\]
Definition (Rump): An **RC-system** is a pair \((X, \ast)\) where \(\ast\) is a binary operation on \(X\) satisfying
\[(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).\]

An **RC-quasigroup** is an RC-system whose left-translations are bijective.
• **Definition (Rump):** An **RC-system** is a pair \((X, \ast)\) where \(\ast\) is a binary operation on \(X\) satisfying
\[
(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).
\]

An **RC-quasigroup** is an RC-system whose left-translations are bijective.

An RC-system is **bijective** if \((s, t) \mapsto (s \ast t, t \ast s)\) is bijective.
• **Definition** (Rump): An **RC-system** is a pair \((X, \ast)\) where \(\ast\) is a binary operation on \(X\) satisfying
\[
(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).
\]
An **RC-quasigroup** is an RC-system whose left-translations are bijective.
An RC-system is **bijective** if \((s, t) \mapsto (s \ast t, t \ast s)\) is bijective.

• **Proposition** (Rump): Involutive biracks \(\iff\) Bijective RC-quasigroups.
• **Definition** (Rump): An **RC-system** is a pair (X, \ast) where \ast is a binary operation on X satisfying
\[(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).\]

An **RC-quasigroup** is an RC-system whose left-translations are bijective.
An RC-system is **bijective** if $(s, t) \mapsto (s \ast t, t \ast s)$ is bijective.

• **Proposition** (Rump): Involutional biracks \iff Bijective RC-quasigroups.

• Proof: For $(X, [,]) \text{ an involutive birack, put } a \ast b := \text{unique } c \text{ satisfying } a [,] b = c.$
• **Definition (Rump):** An **RC-system** is a pair \((X, \ast)\) where \(\ast\) is a binary operation on \(X\) satisfying
\[
(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).
\]
An **RC-quasigroup** is an RC-system whose left-translations are bijective.
An RC-system is **bijective** if \((s, t) \mapsto (s \ast t, t \ast s)\) is bijective.

• **Proposition (Rump):** Involutive biracks \(\iff\) Bijective RC-quasigroups.

• **Proof:** For \((X, [,])\) an involutive birack, put \(a \ast b := \) unique \(c\) satisfying \(a] b = c\).
For \((X, \ast)\) a bijective RC-system, put \(a] b := \) the unique \(c\) satisfying \(a \ast b = c\).
• **Definition** (Rump): An **RC-system** is a pair \((X, \ast)\) where \(\ast\) is a binary operation on \(X\) satisfying
\[
(x \ast y) \ast (x \ast z) = (y \ast x) \ast (y \ast z).
\]
An **RC-quasigroup** is an RC-system whose left-translations are bijective. An RC-system is **bijective** if \((s, t) \mapsto (s \ast t, t \ast s)\) is bijective.

• **Proposition** (Rump): Involutive biracks \(\iff\) Bijective RC-quasigroups.

• **Proof:** For \((X, \lceil, \rceil)\) an involutive birack, put \(a \ast b := \text{unique } c \text{ satisfying } a \lceil b = c\). For \((X, \ast)\) a bijective RC-system, put \(a \lceil b := \text{the unique } c \text{ satisfying } a \ast b = c\).

\[\begin{array}{c}
r = a \lceil (b \rceil c) = (a \lceil b) \rceil ((a \lceil b) \rceil c) \\
\hline
r = a \lceil b \\
\hline
s = a \lceil b \\
\hline
r \ast t = (a \lceil b) \rceil c \\
\hline
r \ast t = (a \lceil b) \rceil c \\
\hline
s \ast t = a \lceil b \\
\hline
s \ast r = (a \lceil b) \rceil c \\
\hline
(s \ast r) \ast (s \ast t) = (a \lceil b) \rceil (a \lceil b) \rceil (a \lceil b) \rceil c \\
\hline
(s \ast r) \ast (s \ast t) = (a \lceil b) \rceil (a \lceil b) \rceil (a \lceil b) \rceil c \\
\hline
(s \ast r) \ast (s \ast t) = (a \lceil b) \rceil (a \lceil b) \rceil (a \lceil b) \rceil c \\
\end{array}\]
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the **structure group** of \((X, \rho)\) is

\[
G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\} \rangle.
\]
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the **structure group** of \((X, \rho)\) is

\[
G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\}\rangle.
\]

• Equivalently: For \((X, \ast)\) a bijective RC-quasigroup, the **structure group** of \((X, \ast)\) is

\[
G := \langle X \mid \{s(s \ast t) = t(t \ast s) \mid s, t \in X\}\rangle.
\]
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the **structure group** of \((X, \rho)\) is

\[G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\} \rangle. \]

• Equivalently: For \((X, \ast)\) a bijective RC-quasigroup, the **structure group** of \((X, \ast)\) is

\[G := \langle X \mid \{s(s \ast t) = t(t \ast s) \mid s, t \in X\} \rangle. \]

• Idem with **monoids**... \(\langle \ldots \rangle^+ \ldots\)
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the **structure group** of \((X, \rho)\) is

\[G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\} \rangle. \]

• Equivalently: For \((X, \ast)\) a bijective RC-quasigroup, the **structure group** of \((X, \ast)\) is

\[G := \langle X \mid \{s(s \ast t) = t(t \ast s) \mid s, t \in X\} \rangle. \]

• Idem with **monoids**... \(\langle \ldots \rangle^+ \ldots\)

• **Example**: \(X = \{a, b, c\}\) with \(\ast y = f(y)\) and \(f : a \mapsto b \mapsto c \mapsto a\).
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the *structure group* of \((X, \rho)\) is

\[
G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\}\rangle.
\]

• Equivalently: For \((X, \ast)\) a bijective RC-quasigroup, the *structure group* of \((X, \ast)\) is

\[
G := \langle X \mid \{s(s \ast t) = t(t \ast s) \mid s, t \in X\}\rangle.
\]

• Idem with monoids... \(...\)^{+}...

• **Example**: \(X = \{a, b, c\}\) with \(\ast \ast y = f(y)\) and \(f : a \mapsto b \mapsto c \mapsto a\). Then

\[
G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2\rangle.
\]
• **Definition** (Etingof–Schedler–Soloviev): For \((X, \rho)\) an invol. nondeg. set-theoretic solution of YBE, the *structure group* of \((X, \rho)\) is

\[
G := \langle X \mid \{ab = a'b' \mid (a', b') = \rho(a, b)\}\rangle.
\]

• Equivalently: For \((X, *)\) a bijective RC-quasigroup, the *structure group* of \((X, *)\) is

\[
G := \langle X \mid \{s(s * t) = t(t * s) \mid s, t \in X\}\rangle.
\]

• Idem with *monoids*... \(\langle \ldots \rangle^+ \ldots\)

• **Example**: \(X = \{a, b, c\}\) with \(x * y = f(y)\) and \(f : a \mapsto b \mapsto c \mapsto a\). Then

\[
G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2\rangle.
\]

• **Main (open) question**: Investigate “YBE-groups” and “YBE-monoids” from an algebraic and geometric viewpoint.
Fact: The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles that of \mathbb{Z}^n (resp. \mathbb{N}^n).
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with \(n \) atoms resembles that of \(\mathbb{Z}^n \) (resp. \(\mathbb{N}^n \)).

• **Example:** \(\langle a, b \mid a^2 = b^2 \rangle \)
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with \(n \) atoms resembles that of \(\mathbb{Z}^n \) (resp. \(\mathbb{N}^n \)).

• **Example:** \(\langle a, b \mid a^2 = b^2 \rangle \ (\cong \mathbb{Z} \times \mathbb{Z}) \)
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles that of \mathbb{Z}^n (resp. \mathbb{N}^n).

• **Example:** $\langle a, b \mid a^2 = b^2 \rangle$ ($\simeq \mathbb{Z} \rtimes \mathbb{Z}$)
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with \(n \) atoms resembles that of \(\mathbb{Z}^n \) (resp. \(\mathbb{N}^n \)).

• **Example:** \(\langle a, b \mid a^2 = b^2 \rangle \ (\cong \mathbb{Z} \times \mathbb{Z}) \)

• **Definition** (Gateva–Van den Bergh):
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles that of \mathbb{Z}^n (resp. \mathbb{N}^n).

• **Example:** $\langle a, b \mid a^2 = b^2 \rangle \ (\simeq \mathbb{Z} \times \mathbb{Z})$

• **Definition** (Gateva–Van den Bergh): For M a monoid and $X \subseteq M$, an *(X-based)* I-structure for M is a bijection $\nu : \mathbb{N}^{(X)} \to M$ s.t. $\nu(1) = 1$, $\nu(s) = s$ for s in X, and
• **Fact:** The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles that of \mathbb{Z}^n (resp. \mathbb{N}^n).

• **Example:** $\langle a, b \mid a^2 = b^2 \rangle \ (\cong \mathbb{Z} \times \mathbb{Z})$

![Diagram of the Cayley graph for the example given in the text.](image)

• **Definition** (Gateva–Van den Bergh): For M a monoid and $X \subseteq M$, an \textit{(X-based)} l-structure for M is a bijection $\nu : \mathbb{N}^{(X)} \to M$ s.t. $\nu(1) = 1$, $\nu(s) = s$ for s in X, and $
exists a \in \mathbb{N}^{(X)} \exists \pi_a \in S_X \ \forall s \in X \ (\nu(as) = \nu(a) \pi_a(s))$.
• **Fact**: The Cayley graph of an YBE-group (resp. monoid) with n atoms resembles that of \mathbb{Z}^n (resp. \mathbb{N}^n).

• **Example**: $\langle a, b \mid a^2 = b^2 \rangle \ (\simeq \mathbb{Z} \rtimes \mathbb{Z})$

![Cayley graph diagram]

• **Definition** (Gateva–Van den Bergh): For M a monoid and $X \subseteq M$, an $(X$-based) *I*-structure for M is a bijection $\nu : \mathbb{N}^{(X)} \rightarrow M$ s.t. $\nu(1) = 1$, $\nu(s) = s$ for s in X, and $
\forall a \in \mathbb{N}^{(X)} \exists \pi_a \in \mathcal{S}_X \forall s \in X \ (\nu(as) = \nu(a) \pi_a(s)).$

• **Theorem** (Gateva–Van den Bergh, Jespers–Okniński): YBE-monoids with atom set X
• **Fact**: The Cayley graph of an YBE-group (resp. monoid) with \(n \) atoms resembles that of \(\mathbb{Z}^n \) (resp. \(\mathbb{N}^n \)).

• **Example**: \(\langle a, b \mid a^2 = b^2 \rangle \ (\cong \mathbb{Z} \rtimes \mathbb{Z}) \)

![Diagram of Cayley graph]

• **Definition** (Gateva–Van den Bergh): For \(M \) a monoid and \(X \subseteq M \), an \((X\text{-based})\) \(I \)-structure for \(M \) is a bijection \(\nu : \mathbb{N}^X \to M \) s.t. \(\nu(1) = 1 \), \(\nu(s) = s \) for \(s \) in \(X \), and

\[
\forall a \in \mathbb{N}^X \ \exists \pi_a \in \mathcal{S}_X \ \forall s \in X \ (\nu(as) = \nu(a) \pi_a(s)).
\]

• **Theorem** (Gateva–Van den Bergh, Jespers–Okniński):

YBE-monoids with atom set \(X \) \iff Monoids with an \(X \)-based \(I \)-structure.
• **Theorem** (Chouraqui):
 YBE-groups with n atoms
Theorem (Chouraqui):

YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.
• **Theorem (Chouraqui):**

YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s braid group B_n.
• **Theorem (Chouraqui):**

YBE-groups with \(n \) atoms \iff Garside groups with \(n \) atoms and \(\binom{n}{2} \) quadratic relations s.t. every length-2 word appears in \(\leq 1 \) relation.

• Seminal example of a Garside group: Artin’s braid group \(B_n \).

 \(B_n \) is a group of fractions of the monoid \(B_n^+ \).
• **Theorem (Chouraqui):**

YBE-groups with \(n \) atoms \iff Garside groups with \(n \) atoms and \(\binom{n}{2} \) quadratic relations s.t. every length-2 word appears in \(\leq 1 \) relation.

• Seminal example of a Garside group: Artin's **braid group** \(B_n \).
 - \(B_n \) is a group of fractions of the monoid \(B_n^+ \),
 - every element of \(B_n^+ \) has a well-defined length in terms of the atoms \(\sigma_i \),
• **Theorem (Chouraqui):**

YBE-groups with n atoms \iff **Garside groups** with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s **braid group** B_n.
 - B_n is a group of fractions of the monoid B^+_n,
 - every element of B^+_n has a well-defined length in terms of the atoms σ_i,
 - any two elements of B^+_n admit left- and right-lcms and gcdfs,
• **Theorem** (Chouraqui):

YBE-groups with n atoms \iff **Garside groups** with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s **braid group** B_n.

 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.
• **Theorem** (Chouraqui):

YBE-groups with \(n \) atoms \(\iff \) Garside groups with \(n \) atoms and \(\binom{n}{2} \) quadratic relations s.t. every length-2 word appears in \(\leq 1 \) relation.

• Seminal example of a Garside group: Artin’s braid group \(B_n \).

 ▶ \(B_n \) is a group of fractions of the monoid \(B_n^+ \),

 ▶ every element of \(B_n^+ \) has a well-defined length in terms of the atoms \(\sigma_i \),

 ▶ any two elements of \(B_n^+ \) admit left- and right-lcms and gcds,

 ▶ the left- and right-divisors of the half-turn braid \(\Delta_n \) coincide, are finite in number, and generate \(B_n^+ \).

• **Definition** (D.–Paris):
Garside groups

• **Theorem (Chouraqui):**

 YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin's braid group B_n.
 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition (D.–Paris):** A Garside monoid is a pair (M, Δ) such that
 - M is a cancellative monoid and Δ belongs to M,

• **Theorem** (Chouraqui):
YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s braid group B_n.

 ▶ B_n is a group of fractions of the monoid B_n^+,
 ▶ every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 ▶ any two elements of B_n^+ admit left- and right-lcms and gcdds,
 ▶ the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition** (D.–Paris): A Garside monoid is a pair (M, Δ) such that

 ▶ M is a cancellative monoid and Δ belongs to M,
 ▶ M is strongly noetherian (every element of M has a well-defined length),
• **Theorem (Chouraqui):**

 YBE-groups with \(n \) atoms \(\iff \) **Garside groups** with \(n \) atoms and \(\binom{n}{2} \) quadratic relations s.t. every length-2 word appears in \(\leq 1 \) relation.

• **Seminal example of a Garside group:** Artin’s **braid group** \(B_n \).

 ▶ \(B_n \) is a group of fractions of the monoid \(B_n^+ \),

 ▶ every element of \(B_n^+ \) has a well-defined length in terms of the atoms \(\sigma_i \),

 ▶ any two elements of \(B_n^+ \) admit left- and right-lcms and gcds,

 ▶ the left- and right-divisors of the half-turn braid \(\Delta_n \) coincide, are finite in number, and generate \(B_n^+ \).

• **Definition (D.–Paris):** A **Garside monoid** is a pair \((M, \Delta) \) such that

 ▶ \(M \) is a cancellative monoid and \(\Delta \) belongs to \(M \),

 ▶ \(M \) is strongly noetherian (every element of \(M \) has a well-defined length),

 ▶ any two elements of \(M \) admit left- and right-lcms and gcds,
• **Theorem (Chouraqui):**

YBE-groups with \(n \) atoms \(\iff \) Garside groups with \(n \) atoms and \(\binom{n}{2} \) quadratic relations s.t. every length-2 word appears in \(\leq 1 \) relation.

• Seminal example of a Garside group: Artin’s **braid group** \(B_n \).
 - \(B_n \) is a group of fractions of the monoid \(B_n^+ \),
 - every element of \(B_n^+ \) has a well-defined length in terms of the atoms \(\sigma_i \),
 - any two elements of \(B_n^+ \) admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid \(\Delta_n \) coincide, are finite in number, and generate \(B_n^+ \).

• **Definition (D.–Paris):** A **Garside monoid** is a pair \((M, \Delta)\) such that
 - \(M \) is a cancellative monoid and \(\Delta \) belongs to \(M \),
 - \(M \) is strongly noetherian (every element of \(M \) has a well-defined length),
 - any two elements of \(M \) admit left- and right-lcms and gcds,
 - the left- and right-divisors of \(\Delta \) coincide, are finite in number, and generate \(M \).
• **Theorem** (Chouraqui):

YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s braid group B_n.
 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition** (D.–Paris): A **Garside monoid** is a pair (M, Δ) such that
 - M is a cancellative monoid and Δ belongs to M,
 - M is strongly noetherian (every element of M has a well-defined length),
 - any two elements of M admit left- and right-lcms and gcds,
 - the left- and right-divisors of Δ coincide, are finite in number, and generate M.

A **Garside group** is a group of fractions of a Garside monoid.
Garside groups

• **Theorem** (Chouraqui): YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s braid group B_n.
 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition** (D.–Paris): A Garside monoid is a pair (M, Δ) such that
 - M is a cancellative monoid and Δ belongs to M,
 - M is strongly noetherian (every element of M has a well-defined length),
 - any two elements of M admit left- and right-lcms and gcds,
 - the left- and right-divisors of Δ coincide, are finite in number, and generate M.

A Garside group is a group of fractions of a Garside monoid.

• **Examples**: B_n,
• **Theorem (Chouraqui):**

YBE-groups with \(n \) atoms \iff \text{Garside groups with } n \text{ atoms and } \binom{n}{2} \text{ quadratic relations s.t. every length-2 word appears in } \leq 1 \text{ relation.}

• **Seminal example of a Garside group:** Artin’s braid group \(B_n \).
 - \(B_n \) is a group of fractions of the monoid \(B_n^+ \),
 - every element of \(B_n^+ \) has a well-defined length in terms of the atoms \(\sigma_i \),
 - any two elements of \(B_n^+ \) admit left- and right-lcms and gclds,
 - the left- and right-divisors of the half-turn braid \(\Delta_n \) coincide, are finite in number, and generate \(B_n^+ \).

• **Definition (D.–Paris):** A **Garside monoid** is a pair \((M, \Delta)\) such that
 - \(M \) is a cancellative monoid and \(\Delta \) belongs to \(M \),
 - \(M \) is strongly noetherian (every element of \(M \) has a well-defined length),
 - any two elements of \(M \) admit left- and right-lcms and gclds,
 - the left- and right-divisors of \(\Delta \) coincide, are finite in number, and generate \(M \).

A **Garside group** is a group of fractions of a Garside monoid.

• **Examples:** \(B_n \), but also: all spherical Artin–Tits groups (including \(\mathbb{Z}^n \)),
• **Theorem (Chouraqui):**

 YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• **Seminal example of a Garside group:** Artin’s braid group B_n.
 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcds,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition (D.–Paris):** A **Garside monoid** is a pair (M, Δ) such that
 - M is a cancellative monoid and Δ belongs to M,
 - M is strongly noetherian (every element of M has a well-defined length),
 - any two elements of M admit left- and right-lcms and gcds,
 - the left- and right-divisors of Δ coincide, are finite in number, and generate M.

 A **Garside group** is a group of fractions of a Garside monoid.

• **Examples:** B_n, but also: all spherical Artin–Tits groups (including \mathbb{Z}^n), many others,
• **Theorem** (Chouraqui):

YBE-groups with n atoms \iff Garside groups with n atoms and $\binom{n}{2}$ quadratic relations s.t. every length-2 word appears in ≤ 1 relation.

• Seminal example of a Garside group: Artin’s **braid group** B_n.
 - B_n is a group of fractions of the monoid B_n^+,
 - every element of B_n^+ has a well-defined length in terms of the atoms σ_i,
 - any two elements of B_n^+ admit left- and right-lcms and gcdfs,
 - the left- and right-divisors of the half-turn braid Δ_n coincide, are finite in number, and generate B_n^+.

• **Definition** (D.–Paris): A **Garside monoid** is a pair (M, Δ) such that
 - M is a cancellative monoid and Δ belongs to M,
 - M is strongly noetherian (every element of M has a well-defined length),
 - any two elements of M admit left- and right-lcms and gcdfs,
 - the left- and right-divisors of Δ coincide, are finite in number, and generate M.

 A **Garside group** is a group of fractions of a Garside monoid.

• **Examples**: B_n, but also: all spherical Artin–Tits groups (including \mathbb{Z}^n), many others, thus in particular YBE-groups.
• Main technical property of Garside groups: existence of a greedy normal form.
• Main technical property of Garside groups: existence of a greedy normal form.
 ► the latter extends to more general framework
 (no need of noetherianity assumption, no need of a “Garside element” Δ, etc.)
• Main technical property of Garside groups: existence of a greedy normal form.
 ▶ the latter extends to more general framework (no need of noetherianity assumption, no need of a “Garside element” Δ, etc.)
 ▶ unifying notion of a Garside family (in a left-cancellative category)
- Main technical property of Garside groups: existence of a greedy normal form.
 - the latter extends to more general framework
 (no need of noetherianity assumption, no need of a “Garside element” Δ, etc.)
 - unifying notion of a Garside family (in a left-cancellative category)
Main technical property of Garside groups: existence of a **greedy normal form**.
- the latter extends to more general framework
 (no need of noetherianity assumption, no need of a "Garside element" Δ, etc.)
- unifying notion of a **Garside family** (in a left-cancellative category)

• In the case of braid groups:
• In the case of braid groups: short exact sequence

\[1 \rightarrow PB_n \rightarrow B_n \rightarrow \mathfrak{S}_n \rightarrow 1, \]
• In the case of braid groups: short exact sequence

\[1 \rightarrow PB_n \rightarrow B_n \rightarrow \mathcal{G}_n \rightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),
• In the case of braid groups: short exact sequence

\[1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto \underline{f} \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).
• In the case of braid groups: short exact sequence

\[1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]
• In the case of braid groups: short exact sequence

\[1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]

length of a permutation = number of inversions
In the case of braid groups: short exact sequence

\[1 \rightarrow PB_n \rightarrow B_n \rightarrow \mathcal{G}_n \rightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

\[+ \text{ a natural (set-theoretic) section } \sigma : f \mapsto f \text{ from } \mathcal{G}_n \text{ to } B_n^+ \text{ s.t. } \mathcal{G}_n \text{ is a germ for } B_n^+. \]

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]

length of a permutation = number of inversions

\[\uparrow \]

\[\mathcal{G}_n \]

The whole structure of \(B_n^+ \) (and \(B_n \)) is encoded

in the germ structure of the Coxeter group \(\mathcal{G}_n \)
In the case of braid groups: short exact sequence

\[1 \rightarrow \mathbb{P}B_n \rightarrow B_n \rightarrow \mathbb{G}_n \rightarrow 1, \]

with \(\mathbb{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathbb{G}_n \) to \(B_n^+ \) s.t. \(\mathbb{G}_n \) is a germ for \(B_n^+ \).

\[\langle \mathbb{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]

length of a permutation = number of inversions

- The whole structure of \(B_n^+ \) (and \(B_n \)) is encoded
 in the germ structure of the Coxeter group \(\mathbb{G}_n \)
 (formally: \(\mathbb{G}_n \) with the partial product \(f \circ g := fg \) if \(\ell(fg) = \ell(f) + \ell(g) \))
In the case of braid groups: short exact sequence

\[1 \longrightarrow \text{PB}_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B^+_n \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B^+_n \) s.t. \(\mathcal{G}_n \) is a germ for \(B^+_n \).

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B^+_n \]

length of a permutation = number of inversions

The whole structure of \(B^+_n \) (and \(B_n \)) is encoded in the germ structure of the Coxeter group \(\mathcal{G}_n \)
(formally: \(\mathcal{G}_n \) with the partial product \(f \bullet g := fg \) if \(\ell(fg) = \ell(f) + \ell(g) \))

Question: Does there exist such a Coxeter-like quotient for every Garside group?
• In the case of braid groups: short exact sequence

\[1 \longrightarrow \text{PB}_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]

length of a permutation = number of inversions

▶ The whole structure of \(B_n^+ \) (and \(B_n \)) is encoded

in the germ structure of the Coxeter group \(\mathcal{G}_n \)

(formally: \(\mathcal{G}_n \) with the partial product \(f \circ g := fg \) if \(\ell(fg) = \ell(f) + \ell(g) \))

• **Question**: Does there exist such a Coxeter-like quotient for every Garside group?

• **Theorem** (Bessis–Digne–Michel): YES for all spherical Artin–Tits groups.
• In the case of braid groups: short exact sequence

\[1 \longrightarrow PB_n \longrightarrow B_n \longrightarrow \mathcal{G}_n \longrightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).

\[\langle \mathcal{G}_n \mid \{fg = h \mid \ell(f) + \ell(g) = \ell(h)\} \rangle^+ = B_n^+ \]

length of a permutation = number of inversions

► The whole structure of \(B_n^+ \) (and \(B_n \)) is encoded
in the germ structure of the Coxeter group \(\mathcal{G}_n \)
(formally: \(\mathcal{G}_n \) with the partial product \(f \bullet g := fg \) if \(\ell(fg) = \ell(f) + \ell(g) \))

• Question: Does there exist such a Coxeter-like quotient for every Garside group?

• Theorem (Bessis–Digne–Michel): YES for all spherical Artin–Tits groups.

the associated Coxeter group \(W \) is finite
In the case of braid groups: short exact sequence

\[1 \rightarrow \text{PB}_n \rightarrow B_n \rightarrow \mathcal{G}_n \rightarrow 1, \]

with \(\mathcal{G}_n \) the size \(n! \) quotient of \(B_n^+ \) obtained by collapsing \(\sigma_i^2 \) for every \(i \),

+ a natural (set-theoretic) section \(\sigma : f \mapsto f \) from \(\mathcal{G}_n \) to \(B_n^+ \) s.t. \(\mathcal{G}_n \) is a germ for \(B_n^+ \).

The whole structure of \(B_n^+ \) (and \(B_n \)) is encoded

in the germ structure of the Coxeter group \(\mathcal{G}_n \)

(formally: \(\mathcal{G}_n \) with the partial product \(f \circ g := fg \) if \(\ell(fg) = \ell(f) + \ell(g) \))

Question: Does there exist such a Coxeter-like quotient for every Garside group?

Theorem (Bessis–Digne–Michel): YES for all spherical Artin–Tits groups.

the associated Coxeter group \(W \) is finite

\[1 \rightarrow \pi_1(V^{\text{reg}}) \rightarrow G \rightarrow W \rightarrow 1. \]
• **Definition**: An RC-quasigroup \((X, \ast)\) is of **class** \(d\)
• **Definition:** An RC-quasigroup \((X, \ast)\) is of **class** \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
• **Definition:** An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has

\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]

where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).
• **Definition**: An RC-quasigroup (X, \ast) is of class d if, for all s, t in X, one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where $\Pi_1(x) = x$ and $\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)$.

• **Lemma (Rump)**: Every finite RC-quasigroup has a finite class.
• **Definition**: An RC-quasigroup \((X, \ast)\) is of **class** \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, ..., s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, ..., x_n) = \Pi_{n-1}(x_1, ..., x_{n-1}) \ast \Pi_{n-1}(x_1, ..., x_{n-2}, x_n)\).

• **Lemma (Rump)**: Every finite RC-quasigroup has a finite class.

• **Theorem (D. 2015)**: “Coxeter-like quotients exist for all YBE-groups”:
• **Definition**: An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t \in X\), one has
 \[
 \Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
 \]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
 For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
 \[
 1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
 \]
• **Definition**: An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, ..., s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, ..., x_n) = \Pi_{n-1}(x_1, ..., x_{n-1}) \ast \Pi_{n-1}(x_1, ..., x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
• **Definition:** An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma (Rump):** Every finite RC-quasigroup has a finite class.

• **Theorem (D. 2015):** “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
plus a (set-theoretic) section \(\sigma : f \mapsto \overline{f}\) from \(W\) to \(G^+\) s.t. \(W\) is a germ for \(G^+\).
• **Definition**: An RC-quasigroup \((X, \ast)\) is of **class** \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, ..., s, t) = t \quad (d\ times\ s),
\]
where \(\Pi_1(x) = x\) and
\[
\Pi_n(x_1, ..., x_n) = \Pi_{n-1}(x_1, ..., x_{n-1}) \ast \Pi_{n-1}(x_1, ..., x_{n-2}, x_n).
\]

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\), plus a (set-theoretic) section \(\sigma : f \mapsto f\) from \(W\) to \(G^+\) s.t. \(W\) is a germ for \(G^+\).

\[
s^{[d]} := \Pi_1(s)\Pi_2(s, s) \cdots \Pi_d(s, ..., s)
\]
• **Definition**: An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:

For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
plus a (set-theoretic) section \(\sigma : f \mapsto f\) from \(W\) to \(G^+\) s.t. \(W\) is a germ for \(G^+\).

\[
s^{[d]} := \Pi_1(s)\Pi_2(s, s) \cdots \Pi_d(s, \ldots, s)
\]
\[
G^+ = \langle W \mid \{fg = h\} \mid \ell_X(f) + \ell_X(g) = \ell_X(h) \rangle^+
\]
• **Definition:** An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad \text{(d times } s)\,,
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma (Rump):** Every finite RC-quasigroup has a finite class.

• **Theorem (D. 2015):** “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
plus a (set-theoretic) section \(\sigma : f \mapsto \overline{f}\) from \(W\) to \(G^+\) s.t. \(\overline{W}\) is a germ for \(G^+\).

\[
s^{[d]} := \Pi_1(s)\Pi_2(s, s) \ldots \Pi_d(s, \ldots, s)
\]
\[
G^+ = \langle \overline{W} \mid \{\overline{fg} = \overline{h} \mid \ell_X(f) + \ell_X(g) = \ell_X(h)\} \rangle^+
\]

The whole structure of \(G^+\) and \(G\) is encoded in the germ structure on \(W\).
• **Definition:** An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \rightarrow \mathbb{Z}^n \rightarrow G \rightarrow W \rightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\), plus a (set-theoretic) section \(\sigma : f \mapsto f\) from \(W\) to \(G^+\) s.t. \(W\) is a germ for \(G^+\).

\[
s^{[d]} := \Pi_1(s)\Pi_2(s, s) \cdots \Pi_d(s, \ldots, s)
\]
\[
G^+ = \langle W \mid \{fg = h \mid \ell_X(f) + \ell_X(g) = \ell_X(h)\} \rangle^+
\]

The whole structure of \(G^+\) and \(G\) is encoded in the germ structure on \(W\).

• Proof: Combines the I-structure and the Garside structure;
• **Definition**: An RC-quasigroup \((X, \ast)\) is of class \(d\) if, for all \(s, t\) in \(X\), one has
\[
\Pi_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where \(\Pi_1(x) = x\) and \(\Pi_n(x_1, \ldots, x_n) = \Pi_{n-1}(x_1, \ldots, x_{n-1}) \ast \Pi_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
plus a (set-theoretic) section \(\sigma : f \mapsto \underline{f}\) from \(W\) to \(G^+\) s.t. \(W\) is a germ for \(G^+\).

\[
s^{[d]} := \Pi_1(s)\Pi_2(s, s)\cdots \Pi_d(s, \ldots, s)
\]
\[
G^+ = \langle \underline{W} \mid \{f g = h \mid \ell_X(f) + \ell_X(g) = \ell_X(h)\} \rangle^+
\]

The whole structure of \(G^+\) and \(G\) is encoded in the germ structure on \(W\).

• **Proof**: Combines the I-structure and the Garside structure; key point: “RC-calculus”.
• **Definition**: An RC-quasigroup \((X, \ast)\) is of **class** \(d\) if, for all \(s, t\) in \(X\), one has
\[
P_{d+1}(s, \ldots, s, t) = t \quad (d \text{ times } s),
\]
where \(P_1(x) = x\) and \(P_n(x_1, \ldots, x_n) = P_{n-1}(x_1, \ldots, x_{n-1}) \ast P_{n-1}(x_1, \ldots, x_{n-2}, x_n)\).

• **Lemma** (Rump): Every finite RC-quasigroup has a finite class.

• **Theorem** (D. 2015): “Coxeter-like quotients exist for all YBE-groups”:
For \(G\) associated with an RC-system \((X, \ast)\) of size \(n\) and class \(d\), there exists a short exact sequence
\[
1 \longrightarrow \mathbb{Z}^n \longrightarrow G \longrightarrow W \longrightarrow 1,
\]
with \(W\) the size \(d^n\) quotient of \(G\) obtained by collapsing \(s^{[d]}\) for every \(s\) in \(X\),
plus a (set-theoretic) section \(\sigma : f \mapsto \underline{f}\) from \(W\) to \(G^+\) s.t. \(\underline{W}\) is a germ for \(G^+\).

\[
s^{[d]} := P_1(s)P_2(s, s) \cdots P_d(s, \ldots, s)
\]
\[
G^+ = \langle W \mid \{fg = h \mid \ell_x(f) + \ell_x(g) = \ell_x(h)\} \rangle^+
\]

The whole structure of \(G^+\) and \(G\) is encoded in the germ structure on \(W\).

• **Proof**: Combines the I-structure and the Garside structure; key point: “RC-calculus”.

• **Remark**: Special case of class 2 previously addressed by Chouraqui and Godelle.
• **Example:** Again $X = \{a, b, c\}$ with $x * y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.
• **Example:** Again $X = \{a, b, c\}$ with $x \ast y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.

 Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.

• **Example**: Again $X = \{a, b, c\}$ with $x * y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.

 ▶ Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.

 ▶ The class is 3,
• **Example**: Again $X = \{a, b, c\}$ with $x * y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.

 - Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.
 - The class is 3, leading to $W := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle$.
• **Example:** Again $X = \{a, b, c\}$ with $x \ast y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.

 > Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.

 > The class is 3, leading to $W := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle$.
• **Example:** Again $X = \{a, b, c\}$ with $x * y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.

 Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.

 The class is 3, leading to $W := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle$.

• **Question:** Which finite groups arise?
• **Example:** Again $X = \{a, b, c\}$ with $x \ast y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.
 - Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.
 - The class is 3, leading to $W := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle$.

• **Question:** Which finite groups arise? What are their linear representations?
• **Example:** Again $X = \{a, b, c\}$ with $x \ast y = f(y)$ and $f : a \mapsto b \mapsto c \mapsto a$.
 - Then $G := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2 \rangle$.
 - The class is 3, leading to $W := \langle a, b, c \mid ac = b^2, ba = c^2, cb = a^2, abc = 1 \rangle$.

• **Question:** Which finite groups arise? What are their linear representations?
 (known: for $\#X = n$, there exists an n-dimensional unitary representation)

 e.g., above: $a \mapsto \begin{pmatrix} 0 & j & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $b \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & j \\ 1 & 0 & 0 \end{pmatrix}$, $c \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ j & 0 & 0 \end{pmatrix}$
• V.G. Drinfeld, *On unsolved problems in quantum group theory*
• V.G. Drinfeld, *On unsolved problems in quantum group theory*

• P. Etingof, T. Schedler, A. Soloviev, *Set-theoretical solutions to the quantum Yang-Baxter equation*
• V.G. Drinfeld, *On unsolved problems in quantum group theory*

• P. Etingof, T. Schedler, A. Soloviev, *Set-theoretical solutions to the quantum Yang-Baxter equation*

• T. Gateva-Ivanova, M. Van den Bergh, *Semigroups of I-type*
• V.G. Drinfeld, *On unsolved problems in quantum group theory*

• P. Etingof, T. Schedler, A. Soloviev, *Set-theoretical solutions to the quantum Yang-Baxter equation*

• T. Gateva-Ivanova, M. Van den Bergh, *Semigroups of I-type*

• E. Jespers, J. Okniński, *Noetherian semigroup algebras*
• **V.G. Drinfeld**, *On unsolved problems in quantum group theory*

• **P. Etingof, T. Schedler, A. Soloviev**, *Set-theoretical solutions to the quantum Yang-Baxter equation*

• **T. Gateva-Ivanova, M. Van den Bergh**, *Semigroups of I-type*

• **E. Jespers, J. Okniński**, *Noetherian semigroup algebras*

• **W. Rump**, *A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation*
• **V.G. Drinfeld**, *On unsolved problems in quantum group theory*

• **P. Etingof, T. Schedler, A. Soloviev**, *Set-theoretical solutions to the quantum Yang-Baxter equation*

• **T. Gateva-Ivanova, M. Van den Bergh**, Semigroups of I-type

• **E. Jespers, J. Okniński**, Noetherian semigroup algebras

• **W. Rump**, *A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation*

• **P. Dehornoy**, *Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs*,
 Adv. in Math. to appear (???)
References

• V.G. Drinfeld, \textit{On unsolved problems in quantum group theory}

• P. Etingof, T. Schedler, A. Soloviev, \textit{Set-theoretical solutions to the quantum Yang-Baxter equation}

• T. Gateva-Ivanova, M. Van den Bergh, \textit{Semigroups of I-type}

• E. Jespers, J. Okniński, \textit{Noetherian semigroup algebras}

• W. Rump, \textit{A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation}

• P. Dehornoy, \textit{Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs},
 Adv. in Math. to appear (???)

www.math.unicaen.fr/\texttt{~}dehornoy